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1. INTRODUCTION

Following the ground breaking paper by Propp and Wilson [17], which presented exact sam-
plers for a range of discrete probability distributions including the Ising model at critical
temperature, a variety of exact or perfect simulation methods has been developed for abso-
lutely continuous probability distributions. In this paper, we are particularly interested in
such methods for polygonal Markov fields observed in planar windows [2].

Our main interest for developing these algorithms is motivated by the fact that the polyg-
onal Markov fields seem to constitute a natural and promising prior for image segmentation
purposes. This has first been noted by Clifford and Middleton [5] whereas the first sam-
pler has been developed by Clifford and Nicholls [6]. Even though the original sampler was
rather slow, it has been recently re-worked and applied for real data by Paskin and Thrun
[16]. A completely different algorithm based on the notion of so-called disagreement loops has
recently been developed by Kluszczyniski, Van Lieshout and Schreiber [11] and successfully
applied for image segmentation [12].

All the above mentioned samplers were, however, based on the classical Metropolis-Hastings

and Gibbs-sampling schemes, and the research was mainly concentrated on elaborating new
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efficient moves whereas the corresponding rates of convergence remain unknown. In this
context, it is important to develop tools allowing for perfect simulation of the polygonal
Markov fields. The present paper deals only with the low-temperature regime for length-
interacting fields, yet we plan to extend the applicability of the perfect scheme to the high-
temperature and area-interacting regimes as well.

The idea underlying the perfect sampling algorith presented in this article is to represent
the polygonal field as a marked point process, with individual points carrying polygonal loops
as their marks. The interaction in this representation turns out to be repulsive and based on
a hard-core inter-contours exclusion rule.

The plan of this paper is as follows. In Section 2.1, we review the construction of the
length-interacting colourless Arak process with empty boundary condition, then present a
survey of marked point and object processes in Section 2.2. In Section3, we re-formulate the
length-interacting Arak process as a hard object process, and derive the mark distribution.
The perfect samplers are discussed in the subsequent Section 4. We summarise our results in
Section 5. For the reader’s convenience, the paper is concluded by an appendix presenting the
so-called dynamic construction for polygonal Markov fields which, even though not directly
used in this paper, provides a lot of intuition as to what the polygonal fields are, thus

complementing the formal definition provided in Section 2 below.

2. POLYGONAL MARKOV FIELDS AND MARKOV OBJECT PROCESSES
2.1 Length-interacting polygonal Markov fields

Let D C R? be a bounded open set of strictly positive Lebesgue measure with piecewise
smooth boundary 0D, to remain fixed throughout this paper. Define the family I'p of

admissible polygonal configurations in D to consist of all planar graphs v in D such that
(P1) ynoD =0,
(P2) all the vertices of v are of degree 2,
(P3) the edges of v do not intersect,
(P4) no two edges of 7 are co-linear.

In words, v consists of a finite number of disjoint polygons fully contained in D and possibly
nested.

For a finite collection (I) = {l;}?_; of straight lines [; intersecting D, denote by I'p() the
family of v € I'p that use (I) as their skeleton in the sense that v C |J ;/; and yN; is a
single interval of a strictly positive length for each I;,7 = 1, ..., n, possibly with some isolated

points added.
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Let Ap be the restriction to D of a Poisson line process A with intensity measure given
by the standard isometry-invariant Lebesgue measure p on the space of straight lines in R2.

Then, the basic polygonal Arak process Ap on D is defined by

[E Z’yGI‘(AD)ﬂG exp(—2¢(7v))
EZ%F(AD) exp(—2£(7))

for all G C I'p that are Borel measurable with respect to the Hausdorff distance topology.

P(Ap € G) = (2.1)

Finally, for any reciprocal temperature 8 > 0, the length-interacting Arak process A[g] in D
is determined in distribution by

dL(AF) ] = exp(—p4(v))
dL(Ap) Eexp (—8¢(Ap))’
with £(-) standing for the law of the argument random object. The reader is referred to [2, 4]
for further details.
Note that in the literature on consistent polygonal fields one usually considers free rather

(2.2)

than empty boundary conditions, yet the empty boundary object is better suited for our

further purposes.

2.2 Marked point processes

Let M be a complete separable metric space and take D as above. A planar marked point
process Mp with positions in D and marks in M is a point process on D x M such that the
process of unmarked points is (locally) finite [7]. In other words, realisations of Y are of the
form (y) = {y1 = (x1,m1),...Yn = (Tn,mp)} where n € Ny, z; € D, and m; € M for all
i=1,...,n, with x; # x; for i # j.

Let vps be a probability measure on the Borel o—algebra B(M). We shall restrict attention
to marked point processes that are absolutely continuous with respect to the distribution of
a unit rate Poisson process Pp on D marked independently and identically according to vy;.

The Papangelou conditional intensity of a marked point process M at (z,m) € (Dx M)\ (y)
is defined as

TSR @i m) Y,y U {(e,m))]

A(z,m); {(x5,my)}iy) = 2.3
(2, m); { (@i mi) Fey) e yr— (2.3

whenever %[{(wi,mi)}?ﬂ] > 0, and arbitrarily (say 0) otherwise. In other words, (2.3)
is the conditional probability of finding a point at dz with mark dvas(m) conditional on the
configuration elsewhere being {(z;, m;)}" ;.

Henceforth, we shall assume the following properties to hold:

(Ml) 3 z: P ) is hereditary, that is, if marked point pattern (y) is assigned a strictly positive

value, so are its subsets,
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(M2) local stability, that is, the Papangelou conditional intensity is bounded from above by

some finite constant A > 0.

For object processes, the mark m of a point at x is a parametrisation of a geometric, planar
object Z(m) translated to the location z. Such an object is said to be hard if it cannot overlap

other objects. In that case,

A((z, m); {(zi, mi) }iey) = 0
whenever

z + Z(m) N [Ui1z: + Z(ma)] # 0.

The generic example is to take a constant conditional intensity whenever there is no overlap,

which corresponds to the conditional law

LM)=L (U{y € Pp}|V(z,m),(z',m) € P:x £ 2 = z+ Z(m)Na' + Z(m') =(Z)) .
(2.4)

of a Poisson process given there is no overlap between the objects in it. Clearly, the map
m — Z(m) has to be such that the conditioning event is measurable. Note that M is Markov
with respect to the overlapping object relation.

A marked point process is said to be repulsive if A(+;-) is decreasing in its second argument
with respect to set inclusion, attractive if it is increasing. Indeed, in case of repulsion, the
more marked points there are, the harder it is to introduce yet another one, and the smaller

the conditional intensity.

3. MARKED POINT PROCESS REPRESENTATION FOR POLYGONAL MARKOV FIELDS

In this section, we shall show that the length-interacting Arak process is a Markov hard
object process (2.4). To do so we recall that, as argued in Schreiber [19] [Section 2.2], the
]

polygonal field A[g admits a so-called polymer representation on the space of closed contours
in D.

Let Cp be the set of all closed polygonal contours in D which do not touch the boundary
O0D. For a given finite configuration (I) = {l1,...,l,} of straight lines intersecting D denote
by Cp(l) the family of those polygonal contours in Cp which belong to I'p(l). Equip the
space Cp with the Hausdorff metric. It is well-known that the Hausdorff metric space on the
family of compact subsets of D U 0D is itself compact and hence complete and separable,
see e.g. Proposition 1-4-4 in Matheron [15]. The subspace Cp is also a metric space and

inherits separability. It is easily seen not to be complete, yet it is a subspace of the compact
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space considered above and hence any point process with marks in Cp falls into the general
framework discussed in Subsection 2.2.

We define the so-called free contour measure Op on Cp by putting for C' C Cp measurable
with respect to the Borel o-field generated by the Hausdorff distance topology,

en(c) = [ S exp(-260))du(0) (31)
Fin(L[D]) gecnep )

with Fin(L[D]) standing for the for the family of finite line configurations intersecting D and

where p* is the measure on Fin(L[D]) given by dp*(l1,...,1n) =[], du(l;) with p defined

in the discussion preceding (2.1).

For 8 € R, define the exponential modification 9[5] of the free measure ©p by
08)(dh) := exp(—BL(0))Op(db) (3.2)

and let P_ s be the Poisson point process on Cp with intensity measure 6[5]. Then, by (3.1)

ol
and (2.1), the polygonal field .A[Dﬁ] coincides in distribution with the union of contours in Pgs

D
conditioned on the event that they are disjoint i.e.

L <AE§]) =L U 0 ‘ Vo.orcp [ﬂ]e #0=0n6' =0 |, (3:3)
06736[3] °p
D

see Section 2.2 in [19]. Note that the conditioning in (3.3) makes sense because G)[g] (Cp)
is finite as shown in of [19, Section 2.2]. Furthermore, for all bounded open sets D with
piecewise smooth boundary, the free contour measures ©p as defined in (3.1) arise as the
respective restrictions to Cp of the same measure © on C := (J,7, C( nm)2, in the sequel
referred to as the infinite volume free contour measure. In the same way we construct the
infinite volume Gibbs-modified measures ©5!.

In order to place the polymer representation in the setting of [14], it is convenient to
identify a given contour collection v = {01, ..., 60} arising as a realisation of A[g], with the
collection of points z; := ¢[6;], i = 1,...,k, carrying the respective contours as their marks,
where ¢[-] is a mapping from Cp to D. Even though a number of different natural candidates
for ¢[-] could be considered, to be specific in the sequel we shall always take ¢[0] to be the
extreme left point of the contour 6, minimising the x-coordinate, with possible ties broken in
an arbitrary measurable way. For formal convenience we regard the marks 6; attached to the
points z; € D as elements of the common space Cp := {6 € C | ¢[f] = 0} shifted to z;. Below,
for a point « € D carrying a mark 6 € Cy, we shall reserve the name of shifted mark for the
translate of the contour # by the vector x. It is also convenient for our further purposes to
admit in Cy the empty contour ().
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For each 8 > 2 we must endow the mark space M = Cy with a probability measure vy;.

This can be done by the random walk representation of [20] as follows. Let of

]

be determined

by the following construction of a Cyp-valued G),[f; -distributed random element 6:

e Simulate a continuous-time random walk Z; governed by the following dynamics

— put Zp := 0 and choose the initial direction uniformly in (0, 27),
— between critical events specified below move in a constant direction with speed 1,

— with intensity given by 4 times the covered length element update the movement
direction, choosing the angle ¢ € (0,27) between the old and new direction ac-
cording to the density |sin(¢)|/4,

e Consider a killed modification Z)° ? of Z, by killing Z,

— with constant rate § — 2,

— whenever it hits its past trajectory,

e Draw an infinite loop-closing half-line [* beginning at 0 and forming with the initial

segment of (Z;)¢>0 an angle ¢* € (0, 27) distributed according to the density | sin ¢*|/4,

e If the random walk Zt[ﬂ 2 hits the loop closing line [* before being killed, and the

self-avoiding contour 8, created by [* and the trajectory of Zt[ﬂ -2

hitting [* satisfies ¢[f«] = 0, then

up to the moment of

— with probability exp(—[8+2]¢(e*)) output 0 := 6,, where e* stands for the segment
Zgﬂ%]’

of the loop closing line I* from 0 to its intersection point with
— otherwise output 6 := 0.
In all remaining cases put 6 := ().

The following lemma, close in spirit to Lemma 5.1 in [20], is the main result of this section.

Lemma 1. For 8 > 2 the polygonal Markov field A[g} coincides in law with the union of
contours carried as shifted marks by the Co-marked point process Y in D, determined by

Papangelou conditional intensity

(oot . [ 8T ife+0n[UL zi+6]=0, 2+6CD, 4
A <(£L‘,0),{(-’Ezyez)}z:1) = { 0’ otherwise. (3 )

with respect to the product of Lebesgue measure on D and @Lﬂ ! on Co-
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Proof The directed nature of the random walk trajectories as constructed above requires
considering for each contour 6 two oriented instances 6 (clockwise) and 0 (anti-clockwise).
In view of the polymer representation (3.3) and taking into account that G)[g] arises as the
restriction of ©f! to Cp, by the construction of @iﬂ ! the assertion of the lemma will follow as

soon as we show that for each z € R? and 0 € Cy we have

16mdz e B2 p (Zlﬁﬂ] reaches [* and the resulting contour falls into z + dﬂ_’)

= 0l(dp), (3.5)

where e* stands for the last segment of §~ counting from x as the initial vertex, which is to
coincide with the segment of the loop-closing line [* joining its intersection point with Zt[ﬁ -2
to 0. Indeed, the same relation holds then for 8, whence adding versions of (3.5) for 6~ and
0%, which amounts to taking into account two possible directions in which the random walk
can move along 6, will yield 20%(df) on the right hand side, whence (3.4) will follow.

To establish (3.5), we observe that the probability element

P (Zy ~2 reaches I* and the resulting contour falls into x + d0_’)

is exactly
k
: (18 ~2) + 4160\ &) [] duilex) (36)
exp(—[(8 — k) :
1w x A [0 € da)) =
where eq,..., e, are all segments of 6 including e*, while [[e;] stands for the straight line

determined by e;. Indeed,

e the prefactor [4[u x u]({(1,1*) | INI* € dz})]~! comes from the choice of the lines
containing respectively the initial segment of 6~ (counting from z) and [* as well as
from the choice between two equiprobable directions on each of these lines,

o for the remaining segments we use the fact that, for any given straight line l, u({l | IN
lo € dt, Z(1,lp) € dp}) = |sinp|dld¢p with d¢ standing for the length element on Iy
and with Z(lp,!) denoting the angle between [ and [y, see Proposition 3.1 in [2] (as well
as the argument justifying the dynamic representation of the Arak process in Section
4 of Arak & Surgailis [2] and the proof of Lemma 1 in Schreiber [19]). Note that the

direction update intensity was set to 4 to coincide with fozw | sin ¢| = 4.

To get the required relation (3.5) it is now enough to use (3.6), recall the definition of
O8] and observe that [u x p]({(I,I*) | INI* € dx}) = 4ndz as follows by standard integral
geometry, cf. [2, Proposition 3.1]. The proof is complete. O
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4. PERFECT SIMULATION USING SPATIAL BIRTH-AND-DEATH PROCESSES
In this section, we consider two exact sampling methods based on the classic idea to simulate
from planar point process models by means of running a spatial birth-and-death process.
Coupling from the past techniques (CFTP) for point processes were introduced in [9] for a
special model. The generalisation to locally stable point processes can be found in [10], and
to marked patterns in [14]; [13] presents an adaptive variation on the theme.

Initialise T = 1, and let Y(0) be a realisation of a Poisson process of rate 87 in D, marked

ii.d. according to vy = @Lﬂ].
Algorithm 1. (CFTP)

o Extend Y(-) backwards to time —T by means of a spatial birth-and-death process with
birth rate 8ndzOL ](d9) and unit death rate.

o Generate L=T(-) (lower process) and U~ (-) (upper process) forwards in time as follows:

— set L'I(=T) =0 and U~T(-T) = Y(-T);

— if V() experiences a backward birth, i.e. Y(t—) = Y(t) U{(z,0)} for some (z,0) &
Y(t), where Y(t—) denotes the state just prior to time t, delete (x,0) from L=T(t—)
and U~ T(t—);

— if V() experiences a backward death, i.e. Y(t—) = Y(t)\ {(z,8)} for some (z,0) €
Y(t), the marked point (x,0) is added to LT (t—) iff

[z +6]N U [z; + 6;] = 0
(24,8:)€U T (1)

and to U~T(t—) iff

[+ 6] N U [zi + 6;] = 0.
(:L‘i,o,,;)eL_T(tf)

o IfUT(0) = L=7(0) stop. Else set T = 2T and repeat.
e Return U~1(0).

The clan of ancestors [8] algorithm is similar in flavour. It has the advantage of avoiding
the birth of marked points that will have no influence on the final outcome, but does not
exploit the repulsive behaviour of the hard core contour process. It tends to be better than
coupling from the past for low intensities, worse for higher ones [14].

Let Y(0) be a realisation of a Poisson process of rate 87 in D, marked i.i.d. according to

var = O Initialise the clan of ancestors as A = Y(0).
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Algorithm 2. (Clan of Ancestors)

e Extend Y(-) backwards by means of a spatial birth-and-death process with birth rate
87rd:c@,[f](d0) and unit death rate. At each (backward) death incident Y(t—) = Y(t) \
{(z,0)} for somet < 0 and (z,0) € ANY(t), add the marked points (z',0") € Y(t—)
for which ' +0' Nz +6 # 0 to A. The backwards sweep ends when Ay = ANY(t) =
The stopping time thus obtained is denoted by —T'.

o Generate Z(-) forwards in time as follows:

— set Z(=T) = 0;

— if V() experiences a backward birth, i.e. Y(t—) = Y(t) U{(z,0)} for some (z,0) &
Y(t), delete (z,0) from Z(t—);

— if V() experiences a backward death, i.e. Y(t—) = Y(t)\ {(z,0)} for some (z,0) €
Aq, the marked point (x,0) is added to Z(t—) iff

[z +6]N U [z + 0i] = 0;
(z4,0:)€Z(t—)

if (z,0) € Ay then Z(t) = Z(t—) remains unchanged.
— Return Z(0).

Some realisations obtained by Algorithms 1-2 implemented in C++ using the library MP-
PLIB [21] are presented in Figures 1-2. The execution time is in the order of seconds for
Figure 1, minutes for those in Figure 2 under Fedora.

Both Algorithm 1 and 2 can be placed in the general framework discussed in [14] as soon as
we are able to verify the conditions (M1) and (M2) for the Papangelou conditional intensity
A(+;+) as given in (3.4), as well as the repulsivity of A(-;-) as needed for the validity of the
Algorithm 1. All these required relations are, however, self-evident, which leads us to the

following lemma concluding the current section.

Lemma 2. The polygonal Markov field Agg] coincides in distribution with both U~T(0) =
L~T(0) as constructed in Algorithm 1 and with Z(0) as output by Algorithm 2.

5. CONCLUSION

In this paper, we designed perfect simulation algorithms for length-interacting colourless
Arak polygonal Markov fields observed in planar windows. To do so, we reformulated the
model as a hard object process, derived the mark distribution, and specialised the coupling

from the past and clan of ancestors algorithms developed for hard object processes to our
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Figure 1: Perfect samples from the length-interacting Arak process (2.2) in D = [0,5]2 by
Algorithm 2 for 8 = 2 (left) and 8 = 3 (right).

particular model. The clan of ancestors method is fastest for low intensities; coupling from
the past applies to a wider range of parameter values (§ and window size). We aim at
constructing high temperature perfect samplers as well, which is the subject of our current
work in progress.

An alternative to spatial birth-and-death based simulation is to use the Metropolis—Hastings
framework [6]. In contrast to a spatial birth-and-death sampler which accepts all proposed
transitions, a Metropolis—Hastings algorithm accepts a new state with a probability that
depends on the likelihood ratio of the new state compared to the current one. Note that
transitions do not need to be limited to births and deaths; for example, one might wish to
alter the angle between two edges, or the position of a vertex. Although such flexibility
may be very desirable in practice to improve the mixing time, it also implies that it may
be harder to design a perfect version than for the dynamics discusssed in Section 4. Even
in the simplest case with birth and death proposals only, one has to discretise D in order
to ensure that deaths are accepted with probability 1, and be careful which point to delete,

S0 as to maintain the set inclusion order between the upper and lower processes U and L



6. Appendix 11

Figure 2: Perfect samples from the length-interacting Arak process (2.2) in D = [0,15]? by
Algorithm 1 for 8 = 2 (left) and 8 = 3 (right).

(cf. Algorithm 1). Simulation studies [14] suggest the increased complexity of the resulting
perfect algorithm is not repaid by increased efficiency, so we do not pursue the topic here.

For further details on perfect Metropolis—Hastings sampling, see [10, 14].

6. APPENDIX

Below, we discuss the dynamic representation and some further properties of the basic Arak
process, see Arak & Surgailis [2], Section 4, for the dynamic representation. For a fixed
bounded open convex domain D we shall construct the basic Arak process A}, with free

boundary conditions (unlike in (2.1) where empty boundary conditions are imposed).

6.1 Dynamic construction of the basic Arak process

We interpret the domain D as a set of time-space points (t,y) € D, with t referred to as the
time coordinate and with y standing for the spatial coordinate of a particle at the time ¢. In
this language, a straight line segment in D stands for a piece of the time-space trajectory of
a freely moving particle. For a straight line [ non-parallel to the time axis and crossing the

domain D we define in the obvious way its entry point to D, in(l, D) € 0D and its exit point
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out(l, D) € 8D.
We choose the time-space birth coordinates for the new particles according to a homo-
geneous Poisson point process of intensity m in D (interior birth sites) superposed with a

Poisson point process on the boundary (boundary birth sites) with the intensity measure
k(B) = Ecard{l € A, in(l, D) € B}, BC 9D. (6.1)

Each interior birth site emits two particles, moving with initial velocities v’ and v” chosen

according to the joint distribution
O(dv’, dv”) == ' = v"|(1 4+ v'*) 7321 + v"?) "3 v’ dv”. (6.2)

This can be shown to be equivalent to choosing the directions of the straight lines representing
the space-time trajectories of the emitted particles according to the distribution of the typical
angle between two lines of A, see Sections 3 and 4 in [2], and the references therein. It is also
easily seen that the value of angle ¢ € (0, 7) between these lines is distributed according to
the density sin(¢)/2. Each boundary birth site z € 9D yields one particle with initial speed
v determined according to the distribution 6, (dv) identified by requiring that the direction
of the line entering D at x and representing the time-space trajectory of the emitted particle
be chosen according to the distribution of a straight line [ € A conditioned on the event
{z =1in(l,D)}.

All the particles evolve independently in time according to the following rules.

(E1) Between the critical moments listed below each particle moves freely with constant

velocity so that dy = vdt,
(E2) When a particle touches the boundary 9D, it dies,

(E3) In case of a collision of two particles (equal spatial coordinates y at some moment ¢
with (¢,y) € D), both of them die,

(E4) The time evolution of the velocity v; of an individual particle is given by a pure-jump

Markov process so that
P(vitar € du | vy = v) = q(v, du)dt
for the transition kernel

q(v,du) = |u — v|(1 4+ u?) 3 2dudt.
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It is worth noting that, in full analogy with the discussion following (6.2), the (sharp) angle
between the straight lines representing the space-time trajectories of the particle before and
after the velocity update is distributed according to the typical angle between two lines of A.

It has been proved (see Lemma 4.1 in [2]) that with the above construction of the interact-
ing particle system, the time-space trajectories traced by the evolving particles coincide in
distribution with the Arak process A}, defined as in (2.1) with the family I'p of admissible
polygonal configurations extended to I'}, allowing also for partial contours chopped off by
the boundary, which amounts to admitting not only internal vertices of degree 2, as in (P2),
but also boundary vertices of degree 1.

6.2 Properties of the basic Arak process

As already mentioned in the introductory section, and as shown in Arak & Surgailis [2],
the basic Arak process A}, enjoys a number of striking properties. The two-dimensional
germ Markov property, stating that the conditional distribution of the field inside a bounded
region with piecewise smooth boundary given the outside configuration only depends on the
trace of this configuration on the boundary (intersection points and intersection directions)
is an immediate consequence of the Gibbsian definition. The next important property is
the consistency: for bounded open and convex D; and Dy with Dy C Ds the restriction
of A}, to Di coincides in distribution with A7, , see [2, Theorem 4.1]. This immediately
allows us to define the infinite volume Arak process .4, which inherits the isometry invariance
of the finite volume Gibbsian definition and which is a thermodynamic limit for A, By
the results of Schreiber [18], this corresponds to the unique infinite-volume bounded-density
stationary evolution of the particle system discussed in Subsection 6.1 above. Interestingly,
the intersection of the Arak process A with any fixed straight line is a Poisson point process
of intensity 2, see [2]. Moreover, the partition function for the Arak process can be explicitly

evaluated: it is known that

E Z exp(—24(6)) = exp(w Area(D)),
5T (Ap)

see Theorem 4.1 in [2] (note that the prefactor 2 exp(4(0D)), present in the quoted theorem,
is absent here because we take the law of A rather than the unnormalised measure u* as the
reference measure and, moreover, we do not sum over two different admissible black/white
colourings of each polygonal configuration). It should be emphasised that these exact results
are only available for A and not for A8, g £ 0.

Interestingly, there exists a much broader class of consistent polygonal Markov fields ad-
mitting analogous dynamic representations, possibly enhanced to allow for vertices of higher

degrees (3 and 4), see [2]. The question of characterising the class of all polygonal Markov
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fields admitting dynamic representations is far from being trivial and falls beyond the scope
of this article. A conjectured description of this class has been provided in Arak, Clifford
& Surgailis [4], where a very nice alternative point- rather than line-based representation of

polygonal fields is also discussed.
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